
Lattice Boltzmann Method for Fluid Simulations

Yuanxun Bill Bao & Justin Meskas

April 14, 2011

1 Introduction

In the last two decades, the Lattice Boltzmann method (LBM) has emerged as a promising tool
for modelling the Navier-Stokes equations and simulating complex fluid flows. LBM is based on
microscopic models and mesoscopic kinetic equations. In some perspective, it can be viewed as a
finite difference method for solving the Boltzmann transport equation. Moreover the Navier-Stokes
equations can be recovered by LBM with a proper choice of the collision operator. In Section 2 and 3,
we first introduce this method and describe some commonly used boundary conditions. In Section 4,
the validity of this method is confirmed by comparing the numerical solution to the exact solution of
the steady plane Poiseuille flow and convergence of solution is established. Some interesting numerical
simulations, including the lid-driven cavity flow, flow past a circular cylinder and the Rayleigh-Bénard
convection for a range of Reynolds numbers, are carried out in Section 5, 6 and 7. In Section 8, we
briefly highlight the procedure of recovering the Navier-Stokes equations from LBM. A summary is
provided in Section 9.

2 Lattice Boltzmann Model

The Lattice Boltzmann method [1, 2, 3] was originated from Ludwig Boltzmann’s kinetic theory of
gases. The fundamental idea is that gases/fluids can be imagined as consisting of a large number of
small particles moving with random motions. The exchange of momentum and energy is achieved
through particle streaming and billiard-like particle collision. This process can be modelled by the
Boltzmann transport equation, which is

∂f

∂t
+ ~u · ∇f = Ω (1)

where f(~x, t) is the particle distribution function, ~u is the particle velocity, and Ω is the collision
operator. The LBM simplifies Boltzmann’s original idea of gas dynamics by reducing the number of
particles and confining them to the nodes of a lattice. For a two dimensional model, a particle is
restricted to stream in a possible of 9 directions, including the one staying at rest. These velocities
are referred to as the microscopic velocities and denoted by ~ei, where i = 0, . . . , 8. This model is
commonly known as the D2Q9 model as it is two dimensional and involves 9 velocity vectors. Figure
1 shows a typical lattice node of D2Q9 model with 9 velocities ~ei defined by

~ei =







(0, 0) i = 0
(1, 0), (0, 1), (−1, 0), (0,−1) i = 1, 2, 3, 4
(1, 1), (−1, 1), (−1,−1), (1,−1) i = 5, 6, 7, 8

(2)

For each particle on the lattice, we associate a discrete probability distribution function fi(~x,~ei, t) or
simply fi(~x, t), i = 0 . . . 8, which describes the probability of streaming in one particular direction.

1



Figure 1: Illustration of a lattice node of the D2Q9 model

The macroscopic fluid density can be defined as a summation of microscopic particle distribution
function,

ρ(~x, t) =

8∑

i=0

fi(~x, t) (3)

Accordingly, the macroscopic velocity ~u(~x, t) is an average of microscopic velocities ~ei weighted by
the distribution functions fi,

~u(~x, t) =
1

ρ

8∑

i=0

cfi~ei (4)

The key steps in LBM are the streaming and collision processes which are given by

fi(~x+ c~ei∆t, t+∆t)− fi(~x, t)
︸ ︷︷ ︸

Streaming

= −
[fi(~x, t)− feq

i (~x, t)]

τ
︸ ︷︷ ︸

Collision

(5)

In the actual implementation of the model, streaming and collision are computed separately, and spe-
cial attention is given to these when dealing with boundary lattice nodes. Figure 2 shows graphically
how the streaming step takes place for the interior nodes.

Figure 2: Illustration of the streaming process of a lattice node

In the collision term of (5), feq
i (~x, t) is the equilibrium distribution, and τ is considered as the relax-

ation time towards local equilibrium. For simulating single phase flows, it suffices to use Bhatnagar-
Gross-Krook (BGK) collision, whose equilibrium distribution feq

i is defined by

feq
i (~x, t) = wiρ+ ρsi(~u(~x, t)) (6)

2



where si(~u) is defined as

si(~u) = wi

[

3
~ei · ~u

c
+

9

2

(~ei · ~u)
2

c2
−

3

2

~u · ~u

c2

]

, (7)

and wi, the weights,

wi =







4/9 i = 0
1/9 i = 1, 2, 3, 4
1/36 i = 5, 6, 7, 8

(8)

and c =
∆x

∆t
is the lattice speed. The fluid kinematic viscosity ν in the D2Q9 model is related to the

relaxation time τ by

ν =
2τ − 1

6

(∆x)2

∆t
(9)

The algorithm can be summarized as follows:

1. Initialize ρ, ~u, fi and feq
i

2. Streaming step: move fi −→ f∗

i in the direction of ~ei

3. Compute macroscopic ρ and ~u from f∗

i using (3) and (4)

4. Compute feq
i using (6)

5. Collision step: calculate the updated distribution function fi = f∗

i −
1

τ
(f∗

i − feq
i ) using (5)

6. Repeat step 2 to 5

Notice that numerical issues can arise as τ → 1/2. During the streaming and collision step, the
boundary nodes require some special treatments on the distribution functions in order to satisfy the
imposed macroscopic boundary conditions. We discuss these in details in Section 3.

3 Boundary Conditions

Boundary conditions (BCs) are central to the stability and the accuracy of any numerical solution.
For the lattice Boltzmann method, the discrete distribution functions on the boundary have to be
taken care of to reflect the macroscopic BCs of the fluid. In this project, we explore two of the most
widely used BCs: Bounce-back BCs [4] and Zou-He velocity and pressure (density) BCs [5].

3.1 Bounce-back BCs

Bounce-back BCs are typically used to implement no-slip conditions on the boundary. By the so-called
bounce-back we mean that when a fluid particle (discrete distribution function) reaches a boundary
node, the particle will scatter back to the fluid along with its incoming direction. Bounce-back BCs
come in a few variants and we focus on two types of implementations: the on-grid and the mid-grid
bounce-back [4].

The idea of the on-grid bounce-back is particularly simple and preserves a decent numerical accuracy.
In this configuration, the boundary of the fluid domain is aligned with the lattice points (see Figure
3). One can use a boolean mask for the boundary and the interior nodes. The incoming directions
of the distribution functions are reversed when encountering a boundary node. This implementation

3



Figure 3: Illustration of on-grid bounce-back

does not distinguish the orientation of the boundaries and is ideal for simulating fluid flows in complex
geometries, such as the porous media flow.

The configuration of the mid-grid bounce-back introduces fictitious nodes and places the boundary
wall centered between fictitious nodes and boundary nodes of the fluid (see Figure 4). At a given
time step t, the distribution functions with directions towards the boundary wall would leave the
domain. Collision process is then applied and directions of these distribution functions are reversed
and they bounce back to the boundary nodes. We point out that the distribution functions at the
end of bounce-back in this configuration is the post-collision distribution functions.

Figure 4: Illustration of mid-grid bounce-back

Although the on-grid bounce-back is easy to implement, it has been verified that it is only first-order
accurate due to its one-sided treatment on streaming at the boundary. However the centered nature
of the mid-grid bounce-back leads to a second order of accuracy at the price of a modest complication.

3.2 Zou-He Velocity and Pressure BCs

In many physical situations, we would like to model flows with prescribed velocity or pressure (density)
at the boundary. This particular velocity/pressure BC we discuss here was originally developed by Zou
and He in [5]. For illustration, we consider that the velocity ~uL = (u, v) is given on the left boundary.
After streaming, f0, f2, f3, f4, f6 and f7 are known. What’s left undetermined are f1, f5, f8 and ρ (see
Figure 5).

4



Figure 5: Illustration of Zou-He velocity BC

The idea of Zou-He BCs is to formulate a linear system of f1, f5, f8 and ρ using (3) and (4). After
rearranging:

f1 + f5 + f8 = ρ− (f0 + f2 + f4 + f3 + f6 + f7) (10)

f1 + f5 + f8 = ρu+ (f3 + f6 + f7) (11)

f5 − f8 = ρv − f2 + f4 − f6 + f7 (12)

By considering (10) and (11), we can determine

ρ =
1

1− u
[(f0 + f2 + f4 + 2(f3 + f6 + f7)] (13)

However, we need a fourth equation to close the system and solve for f1, f5 and f8. The assumption
made by Zou and He is that the bounce-back rule still holds for the non-equilibrium part of the
particle distribution normal to the boundary. In this case, the fourth equation is

f1 − feq
1 = f3 − feq

3 (14)

With f1 solved by (6) and (14), f5, f8 are subsequently determined:

f1 = f3 +
2

3
ρv (15)

f5 = f7 −
1

2
(f2 − f4) +

1

6
ρu+

1

2
ρv (16)

f8 = f6 +
1

2
(f2 − f4) +

1

6
ρu−

1

2
ρv (17)

A similar procedure is taken if a given pressure (density) is imposed on the boundary. Here we notice
that this type of BC depends on the orientation of the boundary and thus is hard to generalize for
complex geometries.

5


